¡Cuánta razón! / AVANCES CIENTÍFICOS
Arriba
32
Enviado por galadah el 15 mar 2016, 23:00

AVANCES CIENTÍFICOS


matemáticas,descubrimiento,números primos,pongo toda la noticia en la imagen porque algunos no ingresan a la fuente,actualidad

Fuente: https://actualidad.rt.com/ciencias/202062-matematicos-descubrir-raro-numeros-primos
Reportar por inadecuado o fuente incorrecta

Quizás también te interese:

Enlace a La piratería vuelve con más fuerza que nunca Enlace a Cosas que la gente romantiza pero que en realidad son horribles Enlace a Imágenes tomadas durante 10 años de las historias y culturas más extrañas de la calle

Vídeo relacionado:

Enlace a Las imágenes más increíbles que ha dejado el terremoto de Taiwán
#1 por vll
17 mar 2016, 10:51

Mooooola!

A favor En contra 2(2 votos)
#2 por iumeik
17 mar 2016, 10:55

El número 9 no es primo. Lástima que no se pueda ver la fuente desde el móvil.

A favor En contra 1(13 votos)
#4 por ingbetico
17 mar 2016, 10:57

Me gustan estas curiosidades matematicas, pero normalmente no las explican de forma decente. Claro que tampoco puedo entrar a la fuente a ver si hay mas información porque estoy desde la versió móvil

A favor En contra 8(10 votos)
destacado
#5 por jlalcantara93
17 mar 2016, 11:00

Menudo artículo... "son aquellos que terminan en 1, 3, 7 y 9"

A ver señores mios... el 21 es divisible entre 3 7 y 1... no es primo, 39 entre 13, 3 y 1... no es primo, 27 entre 9 y 3, 69 entre 3.... El artículo está MAL redactado.

2
A favor En contra 84(176 votos)
#6 por lluesma
17 mar 2016, 11:01

En ningún momento dice que el 9 sea primo @iumeik

A favor En contra 0(0 votos)
destacado
#7 por letramuda
17 mar 2016, 11:05

#5 #5 jlalcantara93 dijo: Menudo artículo... "son aquellos que terminan en 1, 3, 7 y 9"

A ver señores mios... el 21 es divisible entre 3 7 y 1... no es primo, 39 entre 13, 3 y 1... no es primo, 27 entre 9 y 3, 69 entre 3.... El artículo está MAL redactado.
@jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?

10
A favor En contra 62(84 votos)
#8 por letramuda
17 mar 2016, 11:06

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda en asi... iba a poner "en 1, 3..." y luego cambién. Pero bueno, en así queda xD

A favor En contra 1(5 votos)
#9 por Jason_Voorhees6
17 mar 2016, 11:12

Sabiendo que los que acaban en 5 siempre van a ser divisbles por 5 y que los que acaban en número par van a ser divisbles por 2. El 0 divisble por 2 y por 5. Es facil saber que los que acaben en 0,2,4,5,6 y 8 nunca van a ser primos, pero decir que los que acaban en 1,3,7 y 9 son primos es no tener idea.
Los primeros son 1,2,3,5,7,9,11,13,17,19,23,27,29,31,37,41,43,47...
Pero no todos los que acaban en esos números son primos.
21(3*7),27(3*9),33(3*11),39(3*13),49(7*7),51(3*17),57(3*19),63(3*21),69(3*23)...
Supongo que se refieren a que cogiendo todos los que acaban en 1,3,7 y 9 o son primos o son divisbles por primos, es decir, si coges un número cualquiera, lo divides por los primos anteriores y el resto es distinto de 0, es un primo.

1
A favor En contra 3(3 votos)
#10 por tronos154
17 mar 2016, 11:14

Lo que han descubierto es una pequeña muestra de como pueden llegar a comportarse estos numero aunque no es la primera vez que alguien descubre un patrón en estos numero,la hipótesis de Riemann es también un descubrimiento que a mi parecer parece mas solido que el encontrado por estos chicos,por otra parte decir que si se descubre el funcionamiento de estos numero creedme que todos estaremos un tanto jodidos.

1
A favor En contra 2(2 votos)
#11 por _noname_
17 mar 2016, 11:16

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda Basicamente casi toda la criptografía esta basada en numeros primos y su factorización, dicho para dummies: sin numeros primos no habría ni seguridad ni contraseñas. Sin ellos seguramente no habría existido internet.

3
A favor En contra 39(47 votos)
#12 por letramuda
17 mar 2016, 11:19

#11 #11 _noname_ dijo: #7 @letramuda Basicamente casi toda la criptografía esta basada en numeros primos y su factorización, dicho para dummies: sin numeros primos no habría ni seguridad ni contraseñas. Sin ellos seguramente no habría existido internet.@_noname_ para dummies es lo que yo necesitaba xD gracias

A favor En contra 1(1 voto)
#13 por ufodoom
17 mar 2016, 11:20

#9 #9 Jason_Voorhees6 dijo: Sabiendo que los que acaban en 5 siempre van a ser divisbles por 5 y que los que acaban en número par van a ser divisbles por 2. El 0 divisble por 2 y por 5. Es facil saber que los que acaben en 0,2,4,5,6 y 8 nunca van a ser primos, pero decir que los que acaban en 1,3,7 y 9 son primos es no tener idea.
Los primeros son 1,2,3,5,7,9,11,13,17,19,23,27,29,31,37,41,43,47...
Pero no todos los que acaban en esos números son primos.
21(3*7),27(3*9),33(3*11),39(3*13),49(7*7),51(3*17),57(3*19),63(3*21),69(3*23)...
Supongo que se refieren a que cogiendo todos los que acaban en 1,3,7 y 9 o son primos o son divisbles por primos, es decir, si coges un número cualquiera, lo divides por los primos anteriores y el resto es distinto de 0, es un primo.
@Jason_Voorhees6 Se te han colado el 9 que es 3x3 y el 27 que es 9x3 ;)

A favor En contra 1(1 voto)
#14 por _noname_
17 mar 2016, 11:21

#11 #11 _noname_ dijo: #7 @letramuda Basicamente casi toda la criptografía esta basada en numeros primos y su factorización, dicho para dummies: sin numeros primos no habría ni seguridad ni contraseñas. Sin ellos seguramente no habría existido internet.@_noname_ Ni las tarjetas de credito ni los moviles ... etc
Esa es la versión corta y simple, como imagino que no eres de leer te dejo un documental que es algo más ameno: https://www.youtube.com/watch?v=B_oa4eQUego

1
A favor En contra 1(3 votos)
#15 por _noname_
17 mar 2016, 11:24

#14 #14 _noname_ dijo: #11 @_noname_ Ni las tarjetas de credito ni los moviles ... etc
Esa es la versión corta y simple, como imagino que no eres de leer te dejo un documental que es algo más ameno: https://www.youtube.com/watch?v=B_oa4eQUego
@_noname_ Cuando digo que no eres de leer me refiero a tochos de cientos de páginas sobre teoría y aplicación de numeros primos, al releer mi mensaje he pensado que quizá puede sonar ofensivo y no era mi intención. P.D. si tienes un hueco mirate el documental que es muy interesante. ;)

A favor En contra 1(3 votos)
#16 por takeo
17 mar 2016, 11:28

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda Como dice _noname_, son muy importantes para nuestra seguridad (la seguridad de nuestro dinero). Sin embargo, no es cierto que se pensase que eran aleatorios.
Se sabe desde hace mucho tiempo que siguen algún cierto criterio, o patrón, pero no se sabe cual es. Sinceramente, contar cuantos acaban en una cifra o en otra... no me parece un camino que nos vaya a llevar muy lejos para determinar el patrón que siguen. Noticia anecdótica, e incluso curiosa, si quieres, pero nada más. Nada ha cambiado en lo más mínimo en el mundo de los números primos ni de las matemáticas.

A favor En contra 17(19 votos)
#17 por eddymatagallos
17 mar 2016, 11:56

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda No es que no se haya enterado, es que eso es lo que pone. Tú lo has interpretado bien pero realmente está mal redactado, y básicamente viene a decir que los impares son primos. Lo cual no me extraña, porque la mayoría de la gente que redacta estas cosas no tiene ni puta idea de lo que está hablando, y mucho menos cuando se trata de ciencias. En Matemáticas veo burradas cada dos por tres, o mejor dicho, casi ninguna noticia que veo sobre Matemáticas está bien redactada, o bien sueltan dos barbaridades o bien dicen cosas que si bien parecen diferir poco en la forma de expresarlo, el concepto que están describiendo cambia por completo, como en este caso.

1
A favor En contra 6(8 votos)
#18 por grumeme
17 mar 2016, 12:07

#5 #5 jlalcantara93 dijo: Menudo artículo... "son aquellos que terminan en 1, 3, 7 y 9"

A ver señores mios... el 21 es divisible entre 3 7 y 1... no es primo, 39 entre 13, 3 y 1... no es primo, 27 entre 9 y 3, 69 entre 3.... El artículo está MAL redactado.
jlalcantara93 Sólo hay que darse cuenta leyendo un poquito el artículo. Se refiere a q se ha encontrado una estadística bastante buena en cuanto a la sucesión de números primos, con la que en breves ayudará para crear una fórmula que te ayude a saber cuál es primo y cuál no. No está mal redactado.
Los números primos son importantes #7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
porq él álgebra está parcialmente basada en ellos.

A favor En contra 5(7 votos)
#19 por lieutenant
17 mar 2016, 12:11

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda No soy experto, pero sé que en el campo de la seguridad informática se usan números primos como claves para cifrar la información, porque no se pueden factorizar, es decir no puedes sacar de ellos varios números que multiplicados entre sí den la clave: por ejemplo 8 es 2 * 2 * 2 pero 7 no tiene esta correspondencia con otros números (o dicho de otra manera, 7 es un número primo). El usar números no factorizables hace que los cálculos para romper las claves sean mucho más complejos (explicar esta demostración está fuera de mi alcance, pero es así).

Si resulta que se puede calcular la aparición de números primos, la seguridad en general estaría mucho más comprometida.

1
A favor En contra 3(5 votos)
#20 por accountprototype
17 mar 2016, 12:16





Creo que no puedo plasmar de mejor manera mis palabras en este momento

A favor En contra 1(1 voto)
#21 por ingbetico
17 mar 2016, 12:27

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda Hasta donde yo se, los números primos no son más que curiosidades matemáticas. De hecho, más que tener "buenas" propiedades, carecen de ellas. No obstante, el hecho de que carezcan de propiedades los hacen útiles para por ejemplo crear algoritmos de encriptación. Si como dicen ahora, han dado con un patrón en ellos, algunos de estos sistemas de encriptado serán más vulnerables.
En general son usados en temas relacionados con programación.

A favor En contra 1(9 votos)
#22 por se_mental_vergasola
17 mar 2016, 12:59

Como dicen arriba y obviando que este mal redactado, para que este artículo tenga alguna trascendencia debería contar con al menos una teoría de

A favor En contra 0(0 votos)
#23 por carlosjfort
17 mar 2016, 13:51

#19 #19 lieutenant dijo: #7 @letramuda No soy experto, pero sé que en el campo de la seguridad informática se usan números primos como claves para cifrar la información, porque no se pueden factorizar, es decir no puedes sacar de ellos varios números que multiplicados entre sí den la clave: por ejemplo 8 es 2 * 2 * 2 pero 7 no tiene esta correspondencia con otros números (o dicho de otra manera, 7 es un número primo). El usar números no factorizables hace que los cálculos para romper las claves sean mucho más complejos (explicar esta demostración está fuera de mi alcance, pero es así).

Si resulta que se puede calcular la aparición de números primos, la seguridad en general estaría mucho más comprometida.
@lieutenant No tiene por qué. Creo recordar que en criptografía se usan números que son el producto de dos números primos muy grandes, y para romper la clave es necesario saber qué factores son. Si usas números que pueden tener varias decenas de cifras, el tiempo necesario para factorizarlo puede ser demasiado alto como para que sea útil hacerlo. Obviamente no intentes hacerlo con un número de 12 cifras, porque se factoriza en menos de un segundo (con un ordenador no muy potente), pero si lo haces con un número de 100 cifras la cosa cambia.

A favor En contra 0(0 votos)
#24 por Mleko
17 mar 2016, 14:00

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda

Lo que tú dices es lo que pone en el artículo original "Apart from 2 and 5, all prime numbers end in 1, 3, 7 or 9 "

Pero en el del cartel en español pone "son aquellos que terminan en 1, 3, 7 y 9"


Tienen razón los que dicen que está mal redactado. O mal traducido si lo prefieres.

1
A favor En contra 11(15 votos)
#25 por letramuda
17 mar 2016, 15:10

#17 #17 eddymatagallos dijo: #7 @letramuda No es que no se haya enterado, es que eso es lo que pone. Tú lo has interpretado bien pero realmente está mal redactado, y básicamente viene a decir que los impares son primos. Lo cual no me extraña, porque la mayoría de la gente que redacta estas cosas no tiene ni puta idea de lo que está hablando, y mucho menos cuando se trata de ciencias. En Matemáticas veo burradas cada dos por tres, o mejor dicho, casi ninguna noticia que veo sobre Matemáticas está bien redactada, o bien sueltan dos barbaridades o bien dicen cosas que si bien parecen diferir poco en la forma de expresarlo, el concepto que están describiendo cambia por completo, como en este caso.@eddymatagallos #24 #24 Mleko dijo: #7 @letramuda

Lo que tú dices es lo que pone en el artículo original "Apart from 2 and 5, all prime numbers end in 1, 3, 7 or 9 "

Pero en el del cartel en español pone "son aquellos que terminan en 1, 3, 7 y 9"


Tienen razón los que dicen que está mal redactado. O mal traducido si lo prefieres.
@Mleko
A ver, como yo lo veo: "Los números primos son aquellos que sólo son divisibles por 1 y por si mismos; además de 2 y 5, son aquellos que TERMINAN en 1, 3, 7 o 9." Ese "terminan" puede ser un poco confuso, sí, porque en definitiva 1,3, 7 y 9 terminan en 1,3 7 o 9. Pero por otro lado, no es que terminen, es que son esos. Se intuye, o yo lo hago al menos, que se refiere a números de dos o más cifras que acaban en así.

1
A favor En contra 2(4 votos)
#26 por gooyoo
17 mar 2016, 17:11

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda Pff tiene mil usos, si se encontrara una ecuacion q te permita saber cual es el proximo primo, se optimizarian miles de programas de criptografia, e incluso para juegos todo, ademas de el entener mas el universo. Lamentablemente este descrubrimiento es bastante vago, habla d posibilidades y no muy significativas, habra q seguir buscando...

A favor En contra 1(1 voto)
#27 por xavilocus98
17 mar 2016, 18:03

#7 #7 letramuda dijo: #5 @jlalcantara93 a ver a ver, que creo que no te has enterado. No dice que todos los que terminan en 1,3, 7 y 9 son primos, sino que todos los primos terminan en así, a excepción de 2 y 5.

¿Alguien con conocimientos matemáticos me puede explicar, o si es muy abstracto y complicado, indicar si tiene algún uso o valor el hecho de conocer o poder encontrar más números primos?
@letramuda e utiliza en medicina, arquitectura, etc. A raíz de ello se producen series y patrones en la naturaleza, qu luego copiamos para la arquitectura, del mismo modo que se ha copiado la progresión fibonacci, o en la medicina.

A favor En contra 1(1 voto)
#28 por eddymatagallos
17 mar 2016, 20:44

#25 #25 letramuda dijo: #17 @eddymatagallos #24 @Mleko
A ver, como yo lo veo: "Los números primos son aquellos que sólo son divisibles por 1 y por si mismos; además de 2 y 5, son aquellos que TERMINAN en 1, 3, 7 o 9." Ese "terminan" puede ser un poco confuso, sí, porque en definitiva 1,3, 7 y 9 terminan en 1,3 7 o 9. Pero por otro lado, no es que terminen, es que son esos. Se intuye, o yo lo hago al menos, que se refiere a números de dos o más cifras que acaban en así.
@letramuda Sí, a eso se refiere, y es incorrecto. Es cierto que todos los primos 2 cifras o más deben acabar en 1, 3, 7 ó 9; pero no es cierto que todos los números que acaben en 1, 3, 7 ó 9 sean primos, que es lo que significa "Los primos son aquellos que acaban en 1, 3, 7 ó 9".

Por no mencionar que entonces la noticia no tendría sentido pues se conocería la distribución de los números primos, que es justo lo que se supone que está noticia presenta un avance.

A favor En contra 1(1 voto)
#29 por criptex
17 mar 2016, 20:46

Un azá os daba yo para haceros primos de los barbechos

A favor En contra 0(0 votos)
#30 por xpedro98x
17 mar 2016, 21:13

Ahora a esperar que esto cure el cancer, o acabe con el hambre o ayude a construir hogares....

A favor En contra 0(0 votos)
#31 por reimashi
17 mar 2016, 21:36

#11 #11 _noname_ dijo: #7 @letramuda Basicamente casi toda la criptografía esta basada en numeros primos y su factorización, dicho para dummies: sin numeros primos no habría ni seguridad ni contraseñas. Sin ellos seguramente no habría existido internet.@_noname_ Y precisamente por eso el día que descubran cual es el patrón exactamente, va a ser un día interesante...

A favor En contra 0(0 votos)
#32 por laura629
18 mar 2016, 00:26

Este artículo me parece muy estúpido, la verdad. Cuando Gauss tenía 15 años descubrió una aproximación de la función de los números primos. Y como dice #10 #10 tronos154 dijo: Lo que han descubierto es una pequeña muestra de como pueden llegar a comportarse estos numero aunque no es la primera vez que alguien descubre un patrón en estos numero,la hipótesis de Riemann es también un descubrimiento que a mi parecer parece mas solido que el encontrado por estos chicos,por otra parte decir que si se descubre el funcionamiento de estos numero creedme que todos estaremos un tanto jodidos.@tronos154 Riemann desarrolló la "función zeta" para el estudio de los primos, que es mucho más fiable que el descubrimiento de la noticia.
Por otra parte el artículo está muy mal redactado. Qué clase de seriedad hay en "descubren ALGO RARO"? A eso se la llama profesionalidad, sí señor.

A favor En contra 0(0 votos)
#33 por simonbanquillo
20 mar 2016, 09:40

¿Soy el único que no entendio?, No enserio veo a todos discutiendo, me siento estúpido... Mas de normal... :'(

A favor En contra 1(1 voto)

Deja tu comentario

Necesitas tener una cuenta en cuantarazon.com para poder dejar comentarios.

¡Registra tu cuenta ahora!